MATERIAL AND PACKAGE RELIABILITY NEEDS / CHALLENGES FOR HARSH ENVIRONMENTS -POWER ELECTRONIC MODULE EXAMPLE

2017 ECTC Special Session, Lake Buena Vista, FL USA May 30, 2017 HDE-HET, Anton Miric

1 INTRODUCTION

2 DIE ATTACH MATERIALS

<u>3</u> DIE TOP CONNECTION

ATS C

PACKAGING CHALLENGES: POWER MODULE EXAMPLE

Density

Increased Power

Smaller and Thinner Dies

Benefit through smaller dies

- > Reduction of chip size / cost
- > Lower losses / higher efficiency
- > Increase of power & current density per chip

Packaging challenges

- > Increased power loss per chip area requires materials with better heat dissipation
- > More power needs better current carrying capability of packaging materials
- > Increased operating temperatures and **reliability** challenges

sisor as konieme ro konieme so konieme so konieme Timaz = 125° C Pomaz = 125° C Pomaz = 125° C Pomaz = 125° C

Higher Operating

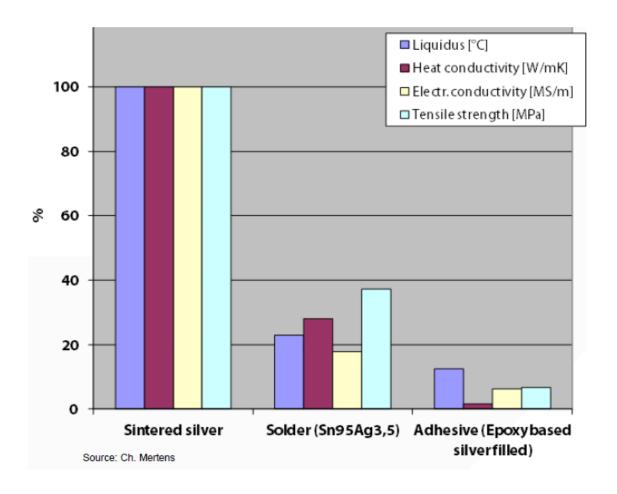
Temperature

Source: Innovative Material Packaging Solutions for superior Power Electronics Devices, EDPC Conference Nov. 2016, Nürnberg, A. Miric, Dr. Frank Osterwald, P. Dietrich, A.S. Klein, A. Hinrich

1 INTRODUCTION

<u>3</u> DIE TOP CONNECTION

HOMOLOGOUS TEMPERATURE OF SnAg (SnAgCu) vs. SnCu IMP and Ag


> High operating temperature / reliability driven change

Material		Unit	SnAg3.5 / SnSb5	SnCu intermetallic phases	Ag
Melting Temperature		°C	221 / 235-240	415	961
Homologous temperature at operating temperature	125 °C	%	81% / 78%	58%	32%
	150 °C	%	86% / 83%	61%	34%
	200 °C	%	96% / 93%	69%	38%
	250 °C	%	106% / 103%	76%	42%

Source: "Requirements for advanced Power Electronics - Status of the ProPOWER Project", A. Miric, APE Paris 2013

HDE-HET, 2017 ECTC Special Session, Lake Buena Vista, FL USA May 30, 2017

PERFORMANCE OF SINTER PASTE VS. SOLDER AND ADHESIVE

Material properties	SnAg3.5 Solder	mAgic Paste ASP 295-Series Non-Pressure	mAgic Paste ASP 016/043/338 Pressure Assisted
Electrical resistivity [mΩ·cm]	0.01 - 0.03	≤ 0.012	≤ 0.008
Thermal conductivity [W/m-K]	20 - 50	> 100	> 200
CTE [ppm/K] (below/above T _g)	25 - 30	19	19
E-Modulus @ 25°C [GPa]	~ 30	~ 25	~ 50
Shear strength [N/mm ²]	~ 40	≥ 10	≥ 20
Process temperature [°C]	230 – 260	≥ 200	≥ 230
Residue free	No	Yes	Yes

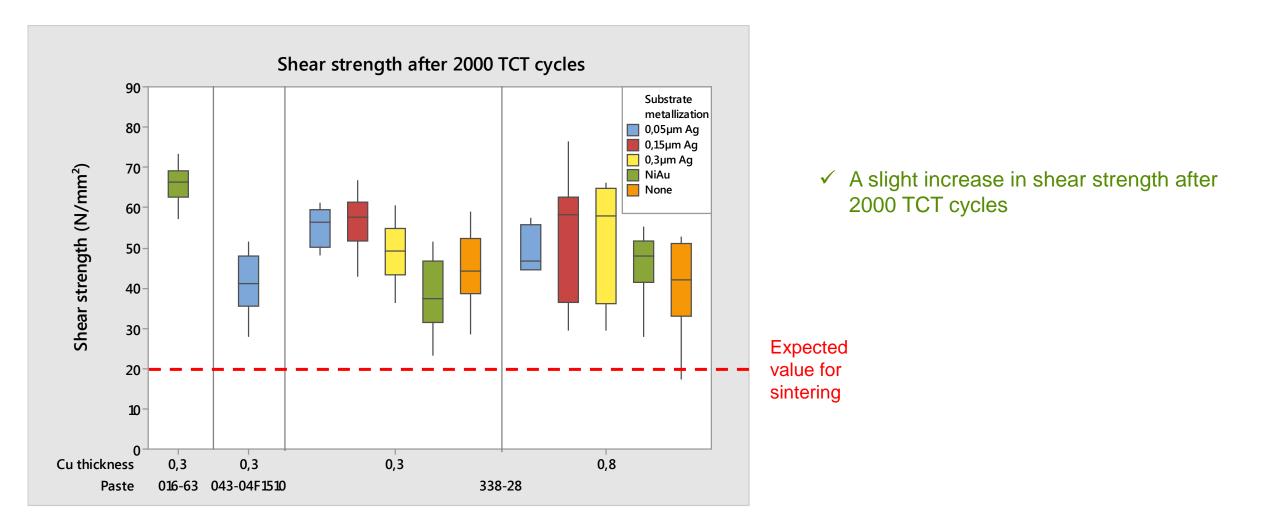
Advantages of sinter paste:

- Operation temperature at least 200°C
- > High reliability
- > Excellent electrical and thermal conductivity
- > No liquid phase at joining process
- > High mechanical strength
- Lead-free technology
- Residue free no flux

Source: Innovative Material Packaging Solutions for superior Power Electronics Devices, EDPC Conference Nov. 2016, Nürnberg, A. Miric, Dr. Frank Osterwald, P. Dietrich, A.S. Klein, A. Hinrich, Own compilation

SINTERING DIES ON Si₃N₄ AMCs WITH DIFFERENT FINISHES (TOSHIBA-MATERIALS),

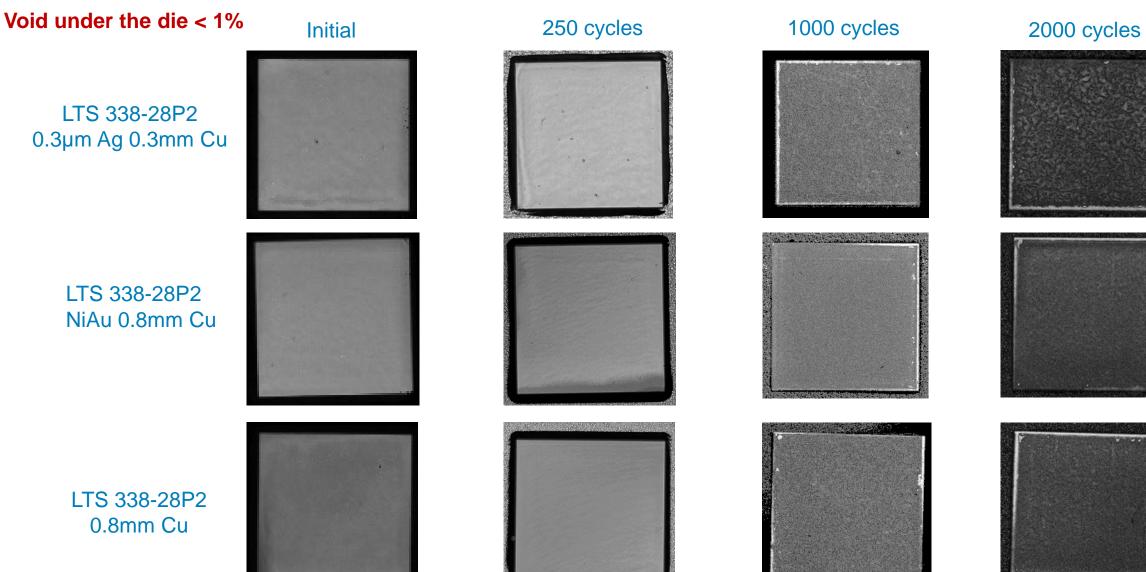
Paste Application – DEK Horizon IX03	Pre Drying of Printed Paste – Binder Oven		Hot Die Placement – Tresky		Pressure Sintering – Boschman Sinterstar
Single card edge printing	Binder Conventional Oven		Tresky pick and place Equipment		Protective Foil PFA Foil
Stencil thickness: 75 µm	Temperature: 120 °C		Placement temperature: 130 °C		Pressure: 10 MPa Temperature: 230 °C
Printing speed: 10 mm/s	Drying time: 20 min	_	Placement pressure: 400 g	-	Time: 3 min
Squeezee pressure: 1 kg	Atmosphere: N_2 (50 ppm O_2)		Placement time: 2000 ms	-	Sinter under air atmosphere



Unauthorized use or disclosure/distribution of the included information is strictly prohibited

SHEAR TEST AFTER 2000 TCT CYCLES (-40°C/+150°C)

Ag BSM dummy die 4x4mm²

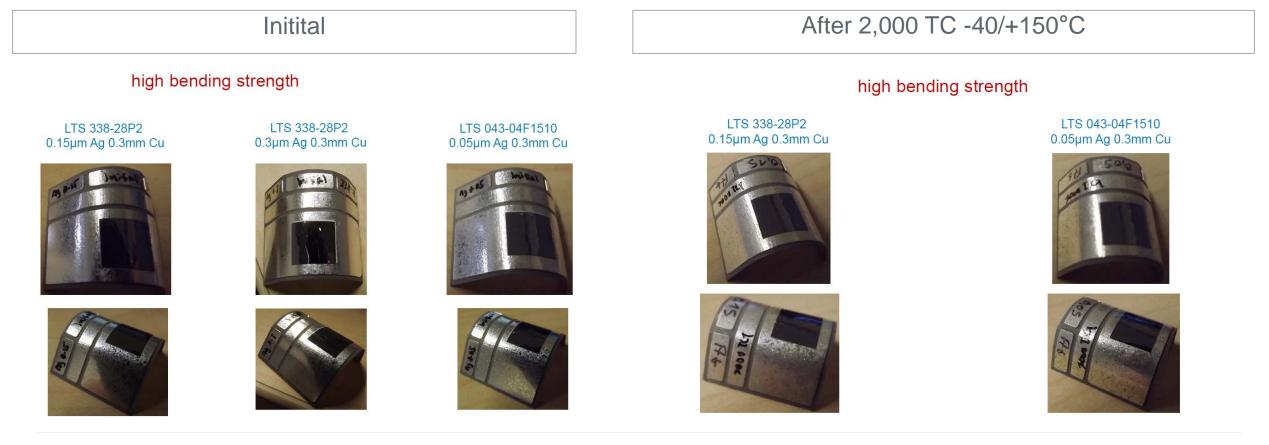


8 |

Ag BSM dummy die 10x10mm²

No delamination was observed

Heraeus



9

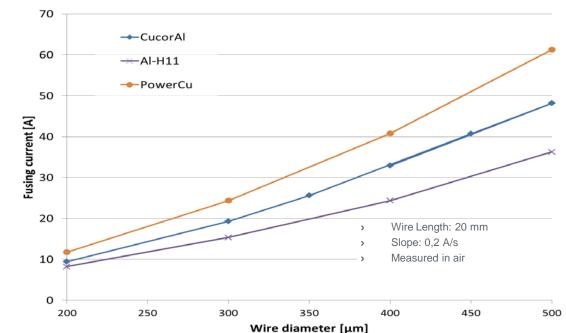
NEW DEVELOPMENTS OF SINTER MATERIALS – BENDING TEST

Sintering on Cu surfaces: dummy die (ISIT 10x10 mm) is attached with pressure sintering to Si_3N_4 AMC (Toshiba-Materials), AMC is bent in special equipment and evaluated for delamination

10

HDE-HET, 2017 ECTC Special Session, Lake Buena Vista, FL USA May 30, 2017

1 INTRODUCTION

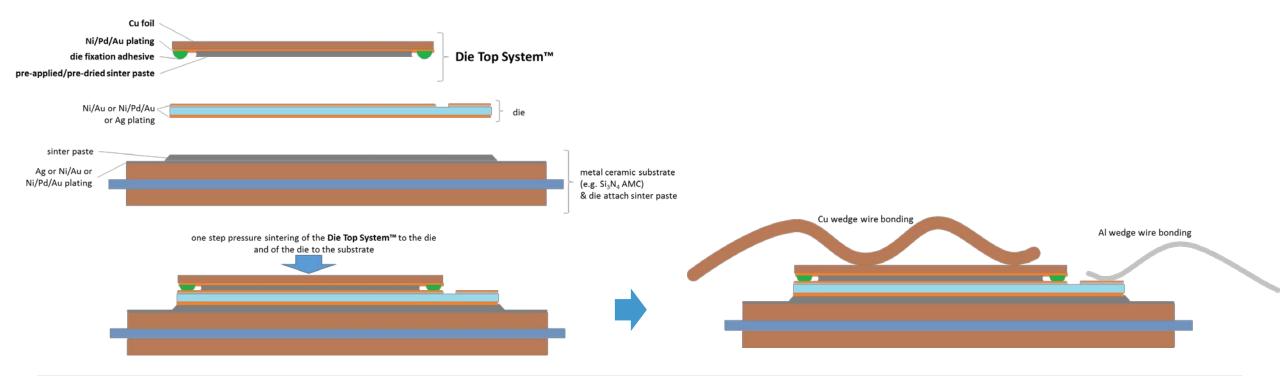


PROPERTIES OF BULK AI AND Cu, INFLUENCE ON FUSING CURRENT, CURRENT CAPABILITY AND RELIABILITY

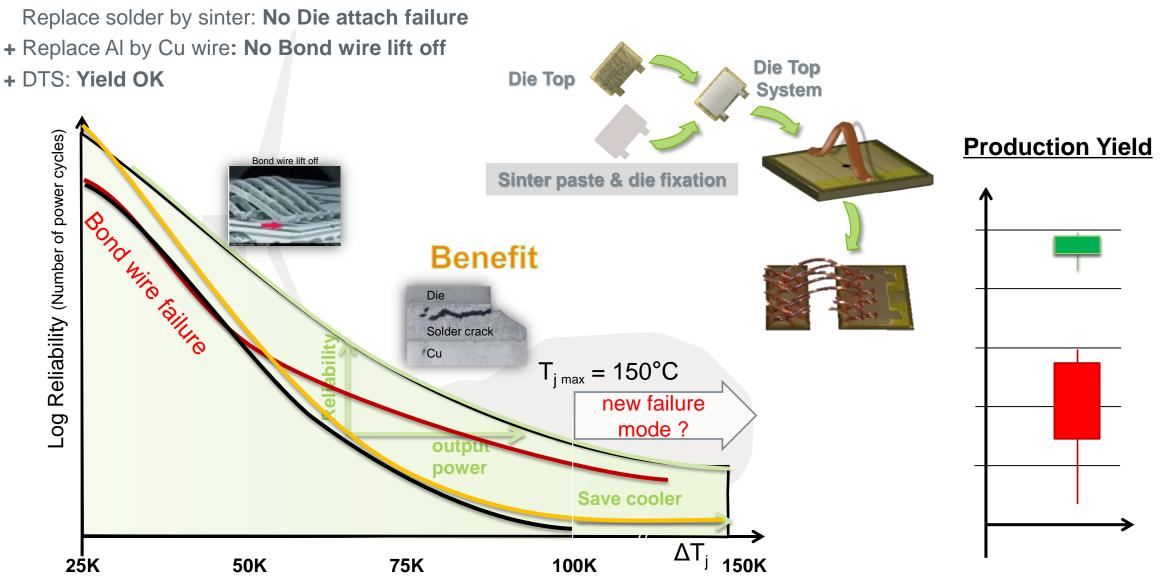
	Unit	AI	Cu
Thermal Conductivity	W / (m * K)	237	401
Electrical Conductivity	A / (V * m)	37.7 * 10 ⁶	59.1 * 10 ⁶
Tensile Strength	MPa	40 - 50	200 – 230
E-Modulus	GPa	70	100130
Vickers Hardness	MPa	167	369
CTE ppm / K		23	17
Melting Point	lelting Point °C		1084.6

	State of the Art	Die Top System Solution
Bonding wire size	Al 400 µm	Cu 400 µm
Current capability	19 A	32.5 A
Die connection	Al thick wire and solder die attach	Cu thick wire and sintering die attach
Module lifetime	standard	>10 x standard
Max. Tj _{continuous}	150 °C	200 °C

HDE-HET, 2017 ECTC Special Session, Lake Buena Vista, FL USA May 30, 2017


Unauthorized use or disclosure/distribution of the included information is strictly prohibited

DIE TOP SYSTEM WITH PRE-APPLIED SINTER PASTE AND DIE FIXATION

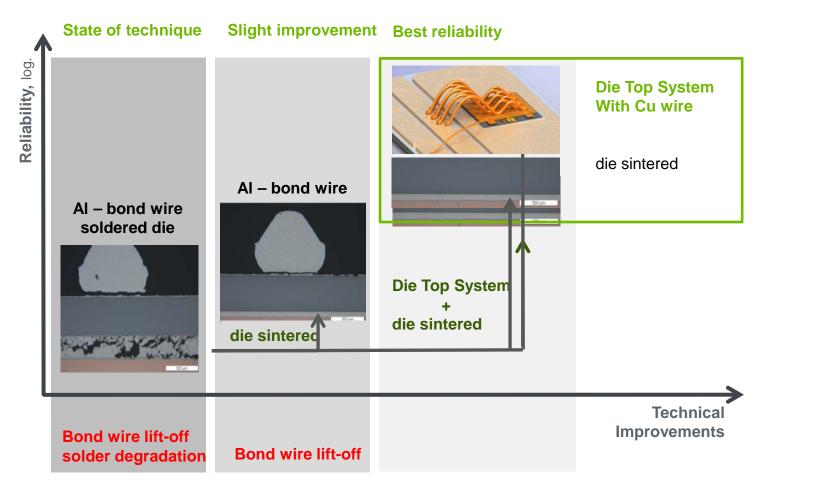

Die Top System is a material system, which consists of:

- 1. Cu foil with functional surfaces optimized for sintering and bonding
- 2. pre-applied and pre-dried sinter paste
- 3. die fixation adhesive

It can be handled like a single components using ordinary production equipment.

Unauthorized use or disclosure/distribution of the included information is strictly prohibited

Source: Innovative Material Packaging Solutions for superior Power Electronics Devices, EDPC Conference Nov. 2016, Nürnberg, A. Miric, Dr. Frank Osterwald, P. Dietrich, A.S. Klein, A. Hinrich


1 INTRODUCTION

SUMMARY AND OUTLOOK

2 DIE ATTACH MATERIALS

<u>3</u> DIE TOP CONNECTION

BEST RELIABILITY WITH MATCHED PACKAGING MATERIALS SOLUTION

Material improvement in one single layer lead to a small contribution - it shifts weakest point to the next joining layer.

A holistic approach is needed.

It is necessary to work on **solutions**, which take into account the **whole stack** of materials in the power module to enable significant reliability and performance improvement.

Source: Prof. Eisele FH Kiel, Danfoss, own compilation

17